Renewable energy products, a looming social and environmental disaster funded by tax credits


Renewables sector falling short on human rights, social impacts, and environmental contamination.

The ongoing and global transition to renewable energies is not exempt from human rights abuses, which are creating risks vital to countering the climate crisis, UN-SDGs, and other significant environmental impacts.

The transition to renewable energy is highly anticipated by many to play a pivotal role in the post-covid-19 recovery, making it even more crucial that the renewable energy sector avoid the mistakes of other energy providers and urgently build respect for human rights and mitigate social and environmental impacts of its products and infrastructure across their operations and supply chains, throughout their useful life and more importantly at the end of its useful life

The renewable energy sectors including Solar and EVs are almost on par with other high-risk industries, such as apparel, agricultural products, mining, oil and gas, shale, and ICT manufacturing with regard to social and environmental impacts. Pressing issues around land use related to Solar, Wind, and Battery waste, as some projects are threatening the conversion from forestry, impeding natural habitat right of ways, converting agricultural land, and are threatening environmentally sensitive areas and land utilized by indigenous people for food and energy production.

At the same time, there are examples of good practices in the sector, where companies have engaged and consulted with local communities, authorities, and indigenous leaders about jobs and part-ownership of renewable energy projects.

Why we should be concerned?

We should continuously ask the questions around any emerging technology or projects, are they potentially toxic or harmful to the environment?

As an example, asking this question about solar, Are solar panels toxic to the environment?

For many, one of the primary motives for going solar is to have a positive impact on the environment. When you use solar energy in your home, the perception is you lower your overall greenhouse gas emissions like carbon dioxide, and you reduce your carbon footprint.

While solar panels are considered a form of clean, renewable energy, the manufacturing process does produce greenhouse gas emissions. To produce solar panels, manufacturers required extremely high temperatures and energy use, need to handle toxic chemicals, and are employing laborers at very low wages in unsafe working conditions.

Although, solar panels are not emitting toxins into the atmosphere as they’re generating electricity. At their end of life, they are broken up and end up in landfills where potentially harmful chemicals used in panel production leach into the soil and natural ecosystem.

It is the belief that solar panels are harmless and possess no real means to cause physical damage. But this could not be further from the truth. There are numerous risks to safety that are present in solar power plants that are not present in any other facility. The majority of the risks available are derived from the material that the solar panels are comprised of, the high voltage traveling through the system, the gaseous vapors flowing off equipment, and the poor quality that solar panels are now manufactured with.

The primary material used for solar cells today is silicon, which is derived from quartz. In order to become usable forms of silicon, the quartz has to be mined and heated in a furnace (which, in turn, emits sulfur dioxide and carbon dioxide into the atmosphere).

There are some chemicals used in the manufacturing process to prepare silicon and make the wafers for monocrystalline and polycrystalline panels. One of the most toxic chemicals created as a by-product of this process is silicon tetrachloride. This chemical, if not handled and disposed of properly, can lead to burns on your skin, harmful air pollutants that increase lung disease, and if exposed to water can release hydrochloric acid, which is a corrosive substance bad for human and environmental health. Other chemicals include cadmium telluride a most dangerous characteristic posed by is that when the substance is exposed to high temperatures it transitions from a solid into a highly carcinogenic vaporous gas that will cause permanent lung damage when exposed to life forms.

The large majority of panels used in installations are safe, silicon-based panels; however, if you’re installing thin-film technology, there are additional toxic materials contained in the thin-film panels itself, such as cadmium telluride and copper indium selenide. These materials are used in the manufacturing process for many other electronics, like your cell phone or laptop. Thin-film panels are not common for residential solar installations and are most often used in large commercial or utility scaled applications. Cadmium telluride has specific chemical properties that make it especially hazardous to all life forms residing near solar power plants. One of the most dangerous characteristics posed by cadmium telluride is that when the substance is exposed to high temperatures it transitions from a solid into a highly carcinogenic vaporous gas that will cause permanent lung damage when exposed to life forms. Considering that gas vapors can travel several hundred feet, this means that when a fire does break out at a solar power facility all residents within that particular area will need to be evacuated to prevent them from exposure to the toxic substance.

There is some concern that exposure to cadmium can cause cancer in human beings, and what is only recently being discovered by scientists is the link between cancer and solar arrays, and we may soon have viable evidence to draw a correlation between and explain why many critics of solar energy have historically always claimed that the panels cause cancer. Regardless of chemicals are employed in the manufacturing of solar panels, all solar panels contain lead solder, and research has shown that lead from solder will seep out of the solar panels along with whatever toxins are also incorporated. This lead then will contaminate the groundwater supply of the surrounding area and pose great risks to all individuals living in the surrounding area. The effects of lead poisoning are heavily documented and are much more familiar to us than poisoning from cadmium.

Fortunately, there is a process that most manufacturers employ to safely recycle silicon tetrachloride back into the manufacturing process for new silicon wafers, helping to eliminate health and environmental risks.

There are human rights and environmental risks associated with all the minerals used in solar panels and lithium-ion batteries. Human rights risks include poor worker health and safety, fair and living wage, conflict over land rights with local and Indigenous peoples, and labor rights issues including child labor and forced labor. Environmental impacts, such as pollution of air, soil, and water, as well as damage to the biodiversity of surrounding ecosystems through poor mineral extractions, water contamination, and waste management. Reducing the carbon emissions produced in mineral extraction is also particularly important, as the uptake in solar and wind energy is motivated by advocates to reduce global carbon emissions. To mitigate the social and environmental impacts of solar panel production, Governments must be proactive in setting and implementing the right policy, regulatory and oversight environment to ensure these minerals are mined and processed responsibly.

Solar panel manufacturing uses toxic chemicals, why is it considered green energy?

The majority of greenhouse gas emissions occurs during the manufacturing process, waste is created, humans are exposed to toxic chemicals, and laborer are exploited in various regions. After all, the current market-driven procurement processes are based on cutting costs and driving profits. While these chemicals can be considered hazardous, they aren’t so while the panels are on your roof. The concern for their toxicity comes into play during the manufacturing process, as well as the disposal process from by-products during the manufacturing process, and at the end of the panel’s lifetime.

China is the largest solar panel manufacturer on the planet (they alone account for 70% of the global market). Many solar manufacturing plants outside of China rely on Chinese imports for raw materials like aluminum framing and PV glass.

The combination of mandatory work stoppages, travel restrictions, and the extended holiday of COVID-19 is hitting China hard, and are predicted to cause a big disruption in the solar industry supply chain. We can expect to see greater pressure on workers to be more productive with no change in compensation as companies try to maintain market share.

Most of the world’s lithium-ion battery manufacturers also call China home. This means that coronavirus is predicted to have a similar impact on the lithium-ion battery storage industry.

Electric Vehicles Batteries

There is a range of materials being used in batteries for electric vehicles. Lithium-ion batteries are utilized in the majority of all-electric and plug-in hybrid electric vehicles; nickel-metal-hydride is common for hybrid cars; and newer materials are being introduced, such as lithium polymer and lithium iron phosphate, with more on the horizon to challenge those commonly used.

The electric vehicle (EV) revolution is picking up the pace, with countries and some US states now mandating deadlines to phase out petrol and diesel engine cars. Electric vehicles are one of the replacement options, however, EV batteries are expensive and relatively inefficient. Until recently, electric vehicles have struggled to travel further than 200 miles on a single charge, and the recharge time makes cross country trips a long and arduous ordeal.

There is a revolution in the materials used in rechargeable EV batteries that will increase their efficiency, making long distances achievable and creating shorter charging times. EV batteries contain the following materials: Cobalt, Nickel, Manganese, Graphite, Silicon

A crucial part of any battery is the electrolyte, a catalyst used to increase the conductivity by helping to transfer ions from the cathode to the anode when charging, and vice versa when discharging. Electrolytes can be either liquid-state, i.e. acids such as sulphuric acid (H₂SO₄) or soluble salts, or solid-state using polymers such as polycarbonate. At the moment, all EV batteries are liquid-state, but solid-state batteries offer many benefits such as being smaller and lighter, providing higher capacity and being cheaper to produce. Most EV battery electrolytes are Li-ion based, meaning they use lithium to carry the charge between electrodes.

Cobalt was the first material used for cathodes in Li-ion batteries and has been used in vast amounts in recent years. However, cobalt is in increasingly short supply due to overuse in the Li-ion battery industry, taking a 55% share of the global cobalt supply. It is a by-product of copper and nickel mining and is expensive to extract. Another problem is that cobalt is not easily recycled, needing much refinement before becoming useable again which makes them cost-prohibitive.

High purity nickel is needed to produce EV battery cathodes due to its extra durability. It is used in the cathode in nickel sulfate form. Nickel sulfate can be made from either class 1 or class 2 nickel. Alt